
Chaos and stochastic modelling of dissipation in a quantum kicked top

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 2183

(http://iopscience.iop.org/0305-4470/28/8/012)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 01:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A. Math. Gen. 28 (1995) 2183-2190. Printed in the UK 
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Abstrad. The behaviour of a quantum kicked lop subject to a dissipation mechanism is 
considered. Following Gisin and Percival (1992 J. Phys. A: Math. Gen. 25 5677) the dissipation 
is described by means of a diffusion process acting on the vector state; thus the dynamics is 
given by the stochastic SchrEdinger equation. This approach allows one lo treat numerically 
much larger quantum systems than with the use of a density operator. The calculations presented 
demonstrate an essential similarity between the classicnl and quantum counterparts of the top, 
the better the similarity the greater the quantum size of the problem. This concerns both the 
regular and chaotic behaviour of the top. 

1. Introduction 

In the classical theory of chaotic dynamical system both Hamiltonian and dissipative 
system are extensively investigated. The situation is completely different in the quantum 
theory where almost exclusively Hamiltonian cases are treated. This results from the fact 
that dissipative quantum dynamics is usually described as a reduced dynamics of the system 
coupled to its environment. Due to a non-Hamiltonian dynamics a state of the system must 
be given by a density operator. This implies an important consequence for numerical 
computations: the size of the evolution matrix for an N-level dissipative system is N Z  x NZ 
whereas for the corresponding Hamiltonian system it is an N x N matrix. 

A typical dissipative system treated in the literature [ 11 is any well known Hamiltonian 
quantum system with some mechanism modelling the dissipation. Examples include a 
kicked oscillator with damping 121, a damped kicked rotor [3,4] or a damped kicked 
top [5.6]. For such simple models it was possible to obtain many interesting results. either 
exact or numerical. For example, it was shown that in the semi-classical limit @ + 0) the 
quantum map reduces to the classical one with first-order corrections having the form of 
noise terms [2,31. 

In the present paper we adopt as a model the well known kicked top system, i.e. we 
deal with an angular momentum which rotates around the z-axis with a constant frequency 
p and is subject to periodical kicks. Every such kick revolves the top around the x-axis 
by an angle u J X .  We consider Markovian dissipation chosen in such a way that the value 
j ( j  + 1) of the square Jz of the angular momentum is conserved 171, therefore we deal 
with a finite-dimensional system. This also implies that the state of the system may be 
represented on a sphere of radius j .  However, since it is more convenient to investigate 
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the quantum-classical correspondence on a unit sphere. discussing the results we use the 
intensive quantities, e.g. JJ j .  

J Iwaniszewski and P Peplowski 

The dynamics of the density operator p are govemed by the equation 
d 
zp = -i(Lo + L l ) p  + A p  (1) 

where 

L O P = B I J ~ ~ P I  L I P =  ( a / j ) z [ J : , p ] W - k )  
k 

and the dissipative part is described by 

(2) 

In practice we are only interested in a stroboscopic map, i.e. in p(tk) where t k  is taken 
at certain determined instants between succeeding kicks, e.g. just before the kick. Then 
equation (1) may be solved explicitly and the quantum map reads 

Yl Yz AP=-([J+, PJ-I+HC)+T([J-. pJ+I+HC). 
Zj 21 

A+] = DPk exp(A + Lo) exp(Li)Pk. (3) 
Let us notice that the dissipation part of the evolution operator commutes with its free 
precession part, therefore the evolution operator is a product of three independent parts: 
free precession, dissipation and kick. In order to investigate the quantum evolution one has 
to compute the ( Z j +  1)’ x ( Z j +  I)’ matrix D. Even for relatively small j (say j = 20) this 
requires a lot of computer memory. In the following we propose a method which avoids this 
numerical constraint and allows for an alternate look at the quantum chaology problems. 

2. Stochastic modelling of dissipation 

A description of a quantum dissipative system using the density operator p means that one 
deals with an ensemble of similar systems and all the information concerns the averaged 
quantities of the total ensemble. However, there appear to be some situations when one is 
only interested in a behaviour of an individual system interacting with an environment, e.g. 
in the quantum measurement problem. Searching for a theoretical description of a single act 
of measurement led to the formulation of some alternative quantum theories of dissipation in 
which the state vector represented an individual system and followed a stochastic dynamics 
(e.g. [8,9], and the literature cited therein). It was argued [9, 101 that such a formulation 
was also applicable in the analysis of any quantum open system. Instead of looking at the 
evolution equation for the density operator (1) one deals with a diffusive quantum process 
for the state vector given by a stochastic Schrsdinger equation. Such a description provides 
an insight into the behaviour of an individual system-it is a promising tool for investigating 
some fundamental problems of quantum physics (e.g. quantum jumps [lo, 1 I]) and gives the 
possibility for a direct comparison with an experiment. On the other hand, and this is what 
we intend to stress considering a kicked top as an example, the use of a vector state instead 
of a density operator allows for a significant reduction of the computer storage required for 
calculations. Instead of using the memory size of order (Zj + 1)4 for the evolution operator 
of the density matrix elements we need a size of order ( Z j  + 1)’. This gives the possibility 
of considering much larger values of j .  The price we pay for this advantage is the necessity 
to consider a sample large enough. However, since the size of an ensemble depends on 
the required precision and not on the value of j ,  the stochastic method thus really does 
establish a very effective tool for an investigation of the quantum-classical correspondence. 
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As is seen from (3), the dynamics of the present system may be described as the 
consecutive acting of a Hamiltonian kicking mechanism and of a dissipative rotation around 
the z-axis. Hence the stochastic formulation of the problem only concerns the latter process. 
Following Gisin et al 19, IO, 121, the diffusion equation for an unnormdized state I@) 
corresponding to (1) without the kicking operator L1 reads in the It6 differential form 

We deal with an unnormalized state vector since it satisfies a simpler equation than the 
normalized one; consequently, the quantum average value (U) of an operator 0 appearing 
above means (@lUl@)/ (@~@).  The symbols t~ and stand for the complex independent 
Wiener processes which satisfy the following relations: - 

d& = 0 

Here the bar denotes averaging over the stochastic ensemble. For a numerical treatment we 
expand I@) into the complete set of eigenstates of J2 

Thus instead of the operator equation (4) we deal with a set of Zj + 1 complex stochastic 
differential equations for the coefficients IC,) which we solve numerically using the 
algorithm of Mannella [13]. The set IC,) was normalized after each time step of the 
integration procedure. 

After one period the final values of [cn} are subject to a Hamiltonian kick which is 
represented by a multiplication by a known unitary matrix ( j ,  nl exp(-i(a/j)J:)l j ,  m).  

3. Results 

The crucial role in the behaviour of the classical counterpart of the map (3) is played by 
the nonlinear parameter a [5,6]. For small a there exists exactly one stable fixed point: 
the north pole for y~ > yz and the south pole otherwise. At some critical value of a the 
north pole undergoes a pitchfork bifurcation and there appear two stable fixed points, while 
the south undergoes the period doubling bifurcation and one observes a stable period-two 
orbit. When a is further increased both solutions undergo an inverted Hopf bifurcation 
which results in a chaotic motion and a strange attractor a p p s .  Although the concept of 
an attractor has no meaning in a quantum theory, one hopes to observe its trace in various 
asymptotic quantities like mean values or a density operator. 

For an illustration of those different kinds of behaviour we present in figure 1 the a- 
dependence of the average value of Jz fj. In the classical case (full curve) we average over 
time, while in the quantum case (for j = 20.30, and 100) it is a double averag-uantum- 
mechanical and over the stochastic realizations. For a = 0 the north pole is the stable 
point (y ,  = 0.04 and M = 0.02) thus the classical system is localized there ((JJj) = 1). 
The system undergoes a pitchfork bifurcation at a = 1 and then there appear two new 
stable points which tend towards the equator as a is increased. Consequently, the value of 
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Figure 1. Classical (full curve) and quantum averages of J J j  for j = 20 (stars), 30 
(tfiangles), and 100 (circles) versus nonlinearity parameler a. The remaining panmeters are: 
p = n/Z. y~ = 0.04 and = 0.02. The dotted curve represents the results of the classical map 
with addition of a small Gaussian noise. The quantum simulations were performed for IO00 
realizations. 

(JJj) becomes smaller. Finally, for LY = 2.25 a strange attractor appears. It covers the 
classical sphere almost uniformly, hence (JJj) is close to zero. (It is slightly greater than 
zero because we present the results just before kicking, i.e. after a dissipative part of the 
evolution moves the top slightly towards the north pole.) 

The behaviour of quantum averages is very similar to that of the classical one. As one 
expects, the coincidence between the quantum and classical results improves with increasing 
j-for greater j the quantum state is better localized. The relatively large discrepancy in 
the region just before the inverted Hopf bifurcation is due to the very complicated stlucture 
of the phase space. In fact three attractors coexist: two fixed points and a strange attractor. 
When a basin of attraction of a fixed point is smaller than the localization region of a 
quantum state, the latter is related to both: a fixed point and a strange attractor. The 
classical case is very sensitive even for small disturbances, while due to the stochastic 
terms the quantum state is in a sense smoothed over. Since the amplitude of those terms 
is of the order of j-'I2, the correspondence of classical and quantum averages is better for 
greater j .  Analogously, a better coincidence is achieved if one disturbs the classical map 
with a stochastic term. This is illustrated in figure 1, where the dotted curve represents the 
results for the classical map for angular momentum components with the addition of a small 
uniform and isotropic Gaussian white noise over the sphere. The strength of the noise is 
chosen so as to approximately follow the quantum results for j = 100. 

Another comparison of the classical and quantum counterparts of the top is displayed 
in figures 2-5. Namely, we compare the shape of the invariant measure P#, @) (0 and 
4 are the angle spherical coordinates) on the classical attractor with the shape of the Q- 
representation for the quantum case. To be more precise. in the case of a regular classical 
motion (figure 2) we also use an additional noise term in order to slightly smooth the 
very sharp invariant measure. In the quantum case we use the probability density function 
Pq(O, @) for finding the quantum top in a point (0, @) on the unit sphere, which is defined as 

2 j + 1  . 
p q ( e , 4 )  = - si@) Q@, 4) 4Jr 

where the Q-representation is the diagonal density operator element in the spin coherent 
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Figure 2. Classical distribution function P&'. @) corresponding to a regular motion (ar = 
1.75.p = r / Z ,  yt = 0.04, r- = 0.02). 

6 0  

Figure 3. Quantum distribution function Pq(tl.@) for j = 200 (the other parameters are as in 
fim 2). 
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Figure 4. The same as figure 2 but for chmtic motion (U = 3). 
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Figure 5. The same as figure 3 but fora = 3. 

wi Pq for a classically regular 
motion (or = 1.75). In both cases the most probable regions on the sphere corresponding to 
the deterministic stable points are identified. The fold shucture of the distributions reflects 
invariant manifolds of the stable fixed points. Figures 4 and 5 display the situation for a 
classically chaotic motion (or = 3.0). Although the smcture of the distributions is also very 
folded, there is no particularly preferred region-the chaotic state covers the sphere more or 
less uniformly. For both regular and chaotic motions we notice a reasonably good agreement 

r = tan(8/2) exp(49). In figures 2 and 3 we show P, an 
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between the classical Pc and quantum Pq distributions, the better the agreement the greater j 
is+ j increases, the more subtle details of the classical attractor appear in the form of Pq. 

4. Conclusions 

In the present paper we investigate the relation between the classical and quantum 
counterparts of a damped kicked top, a system often used for discussing quantum chaology 
problems. We propose an alternative method for treating the dissipation mechanism by 
means of the stochastic SchrGdinger equation (4) for the vector state 116.). instead of the 
usually used von Neumann evolution equation (1) for the density operator p. Such an 
approach allows us to treat systems with very high values of j .  The largest j used in this 
paper is 200, however there are no limitations for considering systems with much greater j .  
The essential cost we must pay for an enlargement of the size of a quantum system is the 
time of the numerical simulations. 

The results presented demonstrate quite good agreement between the behaviour of the 
classical and quantum counterparts of the dissipated kicked top. This agreement becomes 
better when the size of the quantum top increases. This concerns both the regular and 
chaotic regimes of parameters. Thus the proposed method seems to be very promising 
while dealing with quantum counterparts of classically chaotic dissipative dynamics. We 
also notice that, although here the method is applied to a kicked system, it may be used 
directly for systems with continuous time dependence, which is practically (numerically) 
impossible within the framework of the density operator formalism. 

Finally, we must remark that in this paper we do not treat the very important problem 
of a correspondence limit. The determination of the classical noise terms from the quantum 
mechanical foundations is especially interesting for the theory of open systems. In some 
cases (e.g. [3]) one uses a Gaussian (diffusive) approximation of a Wigner representation 
which allows one to mimic a quantum problem with a classical stochastic map. Here, we 
cannot follow this path since the dissipator (2) possesses a non-positive defined diffusion 
matrix 1151 which does not allow for the Gaussian approximation. Hence the stochastic 
terms which we add to the classical map to qualitatively exemplify some features are 
not directly related to the quantum properties. We believe that Gisin’s theory, being an 
alternative viewpoint on the behaviour of the quantum open systems, might be very suitable 
for searching the correspondence limit Further investigations are in progress. 

Nofe added in proof. A f m  this paper had been prepared for publication SpiUer and Ralph [161 presented a 
paper employing the theory of Gisin et nl for mating quantum chaos. Considering a damped, driven, nonlinear 
oscillator they demonsmted a similarity between the Poincare section of a classical mjectory and its quantum 
counterpart. While we study ensemble properties of dissipatjve q u a ”  systems, intending to apply Gisin’s theory 
to the problems previously treated by the density operator formalism, Spiller and Ralph propose a quite new, very 
interesting way of dealing with quanrum chaos. namely an analysis of a single quantum trajectory. 
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